AIMS The objective of the study was to determine whether β-caryophyllene (BCP) exerts a neuroprotective effect in cerebral ischemia-reperfusion (I/R) injury by inhibiting microglial activation and modulating their polarization via… Click to show full abstract
AIMS The objective of the study was to determine whether β-caryophyllene (BCP) exerts a neuroprotective effect in cerebral ischemia-reperfusion (I/R) injury by inhibiting microglial activation and modulating their polarization via the TLR4 pathway. MAIN METHODS Wild-type (WT) and TLR4 knockout (KO) C57BL/6J mice were subjected to cerebral I/R injury and neurologic dysfunction, cerebral infarct volume, brain edema, microglia activation and polarization, and TLR4 expression were determined. In vitro, primary microglia were stimulated with LPS and IFN-γ or IL-4 to induce polarization of microglia toward M1 or M2 phenotypes. KEY FINDINGS BCP reduced cerebral infarct volume, brain edema, and neurologic deficits in WT mice after I/R. The optimal dose of BCP, 72 mg/kg body weight, inhibited microglial activation and reduced the secretion of proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 by microglia of WT mice. BCP inhibited the level of TLR4 in WT mice, and partially reduced neurologic deficits, infarct volume, and brain edema in TLR4 KO mice. Importantly, BCP reduced the number of activated M1-type microglia and increased the number of M2-type microglia in the ipsilateral cortex of both WT and TLR4 KO mice. In vitro, BCP decreased the secretion of proinflammatory cytokines induced by LPS plus IFN-γ, downregulated the level of TLR4 protein, and polarized microglia towards the M2 phenotype. SIGNIFICANCES The decrease in TLR4 activity mediated, at least in part, the anti-inflammatory effects of BCP and its ability to shift microglia polarization from the M1 to M2 phenotype.
               
Click one of the above tabs to view related content.