BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a serious lung problem with advancing and diffusive pulmonary fibrosis as the pathologic basis, and with oxidative stress and inflammation as the key pathogenesis.… Click to show full abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a serious lung problem with advancing and diffusive pulmonary fibrosis as the pathologic basis, and with oxidative stress and inflammation as the key pathogenesis. Glycyl-L-histidyl-l-lysine (GHK) is a tripeptide participating into wound healing and regeneration. GHK-Cu complexes improve GHK bioavailability. Thus, the current study aimed to explore the therapeutic role of GHK-Cu on bleomycin (BLM)-induced pulmonary fibrosis in a mouse model. METHODS BLM (3 mg/kg) was administered via tracheal instillation (TI) to induce a pulmonary fibrosis model in C57BL/6j mice 21 days after the challenge of BLM. GHK-Cu was injected intraperitoneally (i.p.) at different dosage of 0.2, 2 and 20 μg/g/day in 0.5 ml PBS on alternate day. The histological changes, inflammation response, the collagen deposition and epithelial-mesenchymal transition (EMT) was evaluated in the lung tissue. EMT was evaluated by ɑ-SMA and fibronectin expression in the lung tissue. NF-κB p65, Nrf2 and TGFβ1/Smad2/3 signalling pathways were detected by immunoblotting analysis. RESULTS GHK-Cu complex inhibited BLM-induced inflammatory and fibrotic pathological changes, alleviated the inflammatory response in the BALF by reducing the levels of the inflammatory cytokines, TNF-ɑ and IL-6 and the activity of MPO as well as reduced collagen deposition. In addition, the GHK-Cu treatment significantly reversed the MMP-9/TIMP-1 imbalance and partially prevented EMT via Nrf2, NF-κB and TGFβ1 pathways, as well as Smad2/3 phosphorylation. CONCLUSIONS GHK-Cu presented a protective effect in BLM-induced inflammation and oxidative stress by inhibiting EMT progression and suppressing TGFβ1/Smad2/3 signalling in pulmonary fibrosis.
               
Click one of the above tabs to view related content.