LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LncRNA MALAT1/microRNA let-7f/KLF5 axis regulates podocyte injury in diabetic nephropathy.

Photo by kovalskihelga from unsplash

OBJECTIVE The abnormal expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has been demonstrated to exert pivotal effects in human diseases. We focused on the functions of metastasis associated… Click to show full abstract

OBJECTIVE The abnormal expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has been demonstrated to exert pivotal effects in human diseases. We focused on the functions of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and microRNA let-7f on diabetic nephropathy (DN). METHODS The diabetes (db/db) mice were treated with silenced MALAT1, then the baseline indicators, pathology changes, marker proteins of podocyte injury (nephrin, podocin, desmin and Cleaved caspase-3), oxidative stress indicators and inflammatory factors in renal tissues were determined. Murine podocyte MPC5 cells were stimulated by high glucose (HG) and transfected with sh-MALAT1 or let-7f mimic, then the cell migration, adhesion ability and apoptosis were evaluated. Moreover, the binding relationship between MALAT1 and let-7f, and the targeting relationship between let-7f and krüppel-like factor 5 (KLF5) were confirmed. RESULTS Silenced MALAT1 could improve baseline indicators of DN mice, and also improved pathology, increased nephrin and podocin expression, decreased desmin and Cleaved caspase-3 expression, and restrained oxidative stress and inflammatory reaction in their renal tissues. Additionally, elevated let-7f and reduced MALAT1 could restrict migration and apoptosis of HG-induced MPC5 cells, and promoted the cell adhesion ability. CONCLUSION Results in our research indicated that the reduced MALAT1 could relieve the podocyte injury in DN by upregulating let-7f and inhibiting KLF5, which may be helpful for DN therapy.

Keywords: microrna let; pathology; malat1; malat1 microrna; podocyte injury

Journal Title: Life sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.