LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro anti-leukemic assessment and sustained release behaviour of cytarabine loaded biodegradable polymer based nanoparticles.

Photo by pchung_hcmc from unsplash

AIMS The study aimed to develop, characterize, and evaluate poly (ɛ-caprolactone) (PCL) based nanoparticles for the sustained release behaviour of cytarabine and to investigate the in vitro anti-cancer influence on… Click to show full abstract

AIMS The study aimed to develop, characterize, and evaluate poly (ɛ-caprolactone) (PCL) based nanoparticles for the sustained release behaviour of cytarabine and to investigate the in vitro anti-cancer influence on KG-1 leukemic cell line. MATERIALS AND METHODS Nanoprecipitation method was used for the preparation of cytarabine loaded PCL nanoparticles. The developed nanoparticles were characterized for physicochemical properties and the anti-leukemic effect on the KG-1 cell line was evaluated. KEY FINDINGS A total number of five formulations were prepared with size range from 120.5 ± 1.18 to 341.5 ± 3.02, entrapment efficiency (41.31 ± 0.49 to 62.28 ± 0.39%), spherical morphology, negative zeta potentials, considerable particle size distribution, compatibility between the drug and excipients and thermal stability. X-ray diffraction analysis confirmed the successful incorporation of cytarabine in PCL polymer. In vitro drug release in phosphate buffer saline (pH 7.4) showed initial burst release followed by sustained release up to 48 h. The sustained release behaviour efficiently increased the toxicity of cytarabine-loaded PCL nanoparticles to KG-1 (leukemic) and MCF-7 (breast cancer) cell lines in time dependent manner with lower IC50 values than that of drug solution. The flow cytometry study revealed the better apoptotic activity of cytarabine loaded PCL nanoparticle against treated KG-1 cell line. The western blot analysis confirmed the upregulation of cleaved caspase-3 and downregulation of Bcl-2 protein. SIGNIFICANCE The experimental results suggest that cytarabine loaded PCL nanoparticles is an efficient carrier to prevent the dose associated toxicity while providing sustained release pattern to ensure maximum anti-cancer influence.

Keywords: based nanoparticles; release behaviour; cytarabine loaded; sustained release; pcl; cytarabine

Journal Title: Life sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.