LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived growth factor-BB-mediated vascular smooth muscle cell phenotype shift.

Photo by nci from unsplash

AIMS Vascular smooth muscle cell (VSMC) phenotype shift is involved in the pathophysiology of vascular injury or platelet-derived growth factor (PDGF)-induced abnormal proliferation and migration of VSMCs. We aimed to… Click to show full abstract

AIMS Vascular smooth muscle cell (VSMC) phenotype shift is involved in the pathophysiology of vascular injury or platelet-derived growth factor (PDGF)-induced abnormal proliferation and migration of VSMCs. We aimed to investigate the underlying mechanism involved in PDGF-mediated signaling pathways and autophagy regulation followed by VSMC phenotype shift. MAIN METHODS The proliferation, migration and apoptosis of cultured rat aortic VSMCs were measured, and cells undergoing phenotype shift and autophagy were examined. Specific inhibitors for target proteins in signaling pathways were applied to clarify their roles in regulating cell functions. KEY FINDINGS PDGF-BB stimulation initiated autophagy activation and synthetic phenotype transition by decreasing α-smooth muscle-actin (SMA), calponin and myosin heavy chain (MHC) and increasing osteopontin (OPN) expression. However, U0126, a potent extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, decreased PDGF-BB-induced LC3 expression, while rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), increased it. Furthermore, U0126 decreased the expresseion of autophagy-related genes (Atgs) such as beclin-1, Atg7, Atg5, and Atg12-Atg5 complex, indicating that Erk1/2 is a regulator of PDGF-BB-induced VSMC autophagy. Regardless of autophagy inhibition by U0126 or activation by rapamycin, the PDGF-BB-induced decrease in SMA, calponin and MHC and increase in OPN expression were inhibited. Furthermore, PDGF-BB-stimulated VSMC proliferation, migration and proliferating cell nuclear antigen (PCNA) expression were inhibited by U0126 and rapamycin. SIGNIFICANCE These findings suggest that PDGF-BB-induced autophagy is strongly regulated by Erk1/2, an mTOR-independent pathway, and any approach for targeting autophagy modulation is a potential therapeutic strategy for addressing abnormal VSMC proliferation and migration.

Keywords: pdgf induced; cell; smooth muscle; phenotype shift

Journal Title: Life sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.