LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

microRNA-6785-5p-loaded human umbilical cord mesenchymal stem cells-derived exosomes suppress angiogenesis and metastasis in gastric cancer via INHBA.

Photo by art_almighty from unsplash

OBJECTIVE Exosomes (Exos) are known to transfer microRNAs (miRNAs) to participate in human diseases. We aim to identify the role of human umbilical cord mesenchymal stem cells (HUCMSCs)-derived Exos (HUCMSC-Exos)… Click to show full abstract

OBJECTIVE Exosomes (Exos) are known to transfer microRNAs (miRNAs) to participate in human diseases. We aim to identify the role of human umbilical cord mesenchymal stem cells (HUCMSCs)-derived Exos (HUCMSC-Exos) conveying miR-6785-5p in gastric cancer (GC). METHODS MiR-6785-5p and inhibin subunit beta A (INHBA) expression in GC tissues and cells were determined. GC cells were transfected with the vectors that altered miR-6785-5p or INHBA expression. HUCMSCs were transfected with altered miR-6785-5p or INHBA vectors, and the HUCMSC-Exos were extracted. Then, HUCMSC-Exos were co-cultured with GC cells. The proliferation, migration, invasion, apoptosis and angiogenesis of GC cells were assessed. The binding relationship between miR-6785-5p and INHBA was verified. RESULTS MiR-6785-5p was down-regulated and INHBA was up-regulated in GC tissues and cells. Elevation of miR-6785-5p or inhibition of INHBA restricted the malignant development of GC cells. HUCMSC-Exos suppressed malignant episodes of GC cells, which could be further enhanced by up-regulated miR-6785-5p or down-regulated INHBA. Elevated INHBA abolished the impacts of up-regulated miR-6785-5p in HUCMSC-Exos on GC cells. INHBA was confirmed as a target gene of miR-6785-5p. CONCLUSION HUCMSC-Exos containing elevated miR-6785-5p suppress angiogenesis and metastasis in GC via inhibiting INHBA. This study may further the understanding on molecular mechanisms of GC.

Keywords: angiogenesis; mir 6785; inhba; human umbilical; hucmsc exos

Journal Title: Life sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.