LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geochronology, geochemical and Sr–Nd–Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration

Photo from wikipedia

Abstract A general consensus has emerged that high field strength elements (HFSE) can mobile to some extent in a hydrothermal fluid. However, there are hot debates on whether sub-solidus hydrothermal… Click to show full abstract

Abstract A general consensus has emerged that high field strength elements (HFSE) can mobile to some extent in a hydrothermal fluid. However, there are hot debates on whether sub-solidus hydrothermal alteration can lower the Nb/Ta ratio in evolved melts. In this study, we present petrography, geochronology and geochemistry of the barren and mineralized rocks in the Yemaquan skarn iron deposit, northern Qinghai-Tibet Plateau, to probe magmatic-hydrothermal transition. The barren rocks consist of diorites, granodiorites, granites and syenogranites, whereas the porphyritic granodiorites are associated with mineralization for an excellent consistency between the magmatic zircon U-Pb age (225 ± 2 Ma) and the hydrothermal phlogopite 40 Ar- 39 Ar age (225 ± 1.5 Ma). The Sr-Nd-Hf-Pb isotopic data demonstrate that the Yemaquan granitoids are originated from a relatively homogenous enriched mantle with different degrees of crust contamination (assimilation fractional crystallization, AFC). Trace elements signatures indicate that the porphyritic granodiorites related to mineralization display amphibole crystallization for high water contents, whereas the barren granites have gone through biotite crystallization due to potassium enrichment by continuous upper crust contamination, both of which are responsible for their Nb/Ta ratios, respectively. Modeling results suggest that a basaltic melt with Nb/Ta ratio of 15.3 can reach a minimum Nb/Ta ratio of 12 in the producing granodioritic melt by amphibole fractional crystallization based on partition coefficients of Nb and Ta between amphibole and melts from previous experiments. This may explain the average Nb/Ta ratio (13.7) of the barren granodiorites, while it cannot account for the average Nb/Ta ratio (8.4) of the mineralized porphyritic granodiorites, and it is even lower than that of the granites (10.3) with biotite fractional crystallization. Exsolution of a magmatic-hydrothermal fluid is inevitable when a water saturated magma emplaced in shallow crust, leading to a transportation of certain chemical components from the magmatic melts to exsolved fluids. Because Nb seems more mobile than Ta in fluorine-bearing fluids, we contend that a preferentially transport Nb over Ta by sub-solidus hydrothermal alteration can further lower the Nb/Ta ratios of the mineralized porphyritic granodiorites, which may also result in a broad range of HFSE contents and their ratios in the altered porphyritic granodiorites formed in a post-magmatic process.

Keywords: fractional crystallization; hydrothermal alteration; crystallization; geochronology; solidus hydrothermal; sub solidus

Journal Title: Lithos
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.