Abstract Mode of occurrence and chemical composition of tourmaline in pelitic schists from the Main Central Thrust (MCT) zone of the Lesser Himalayan Sequences (LHS) are described in detail with… Click to show full abstract
Abstract Mode of occurrence and chemical composition of tourmaline in pelitic schists from the Main Central Thrust (MCT) zone of the Lesser Himalayan Sequences (LHS) are described in detail with the aim of deducing the chemical characteristics of tourmaline formed through B-bearing fluid infiltration and of estimating the composition of the syn-metamorphic fluids. Metasomatic tourmalines from the tourmalinized wall rocks show significant increases in XCa [=Ca/(Ca + Na)] at almost constant XMg [=Mg/(Mg + Fe2+)] from the cores or mantles to the rims. Tourmaline in tourmaline-rich (> 1.0 vol%) pelitic schists from the biotite zone to the kyanite zone also show marked increase in XCa at almost constant XMg, and are interpreted as a product of B-bearing fluid infiltration. Abundant margarite and anorthite formed in the pelitic schists intercalated with the metadolostone layers suggesting that the B-rich fluid became Ca enriched as it interacted with metadolostone layers, and metasomatically introduced Ca into the pelitic schists. Infiltration of such B- and Ca-rich fluids into pelitic schists likely resulted in production of abundant tourmaline with the compositional trend of increasing XCa at almost constant XMg. Most of the tourmaline in tourmaline-rich pelitic schists are in equilibrium with plagioclase, suggesting that the fluid composition was buffered by the pelitic schists. Composition of tourmaline in the pelitic schists with
               
Click one of the above tabs to view related content.