LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supercontinent transition as a trigger for ~1.1 Gyr diamondiferous kimberlites and related magmatism in India

Photo from wikipedia

Abstract Kimberlites are volatile-rich deep mantle-derived rocks that often contain diamonds. Numerous Grenvillian (ca. 1.1 Gyr) diamondiferous kimberlites, ultramafic lamprophyres, and lamproites are exposed in the Eastern Dharwar Craton and… Click to show full abstract

Abstract Kimberlites are volatile-rich deep mantle-derived rocks that often contain diamonds. Numerous Grenvillian (ca. 1.1 Gyr) diamondiferous kimberlites, ultramafic lamprophyres, and lamproites are exposed in the Eastern Dharwar Craton and the Bastar Craton, India, and are aligned almost parallel to the Eastern Ghats (granulite) Mobile Belt (EGMB). The trigger for these kimberlite and related magmatic events still remains an open question. We review the available geochronological and radiogenic isotopic data for the ~1.1 Gyr kimberlites, lamproites, and ultramafic lamprophyres from the Eastern Dharwar Craton and the Bastar Craton of the Indian shield. We show that kimberlites and associated magmas were emplaced for a longer duration (ca. 130 Myr) in the Indian shield during the Mesoproterozoic and sampled distinct mantle source regions. The kimberlites and ultramafic lamprophyre are characterized by slightly depleted to chondritic Nd isotopic ratios revealing their origin at deeper sub-lithospheric regions, whereas the lamproites essentially show an enriched Nd isotopic signature suggesting their derivation from enriched sub-continental lithospheric mantle. We argue that the absence of linear age progression, prolonged magmatic activity compared to the time span of coeval large igneous provinces (the Umkondo, the Keweenawan, and the Warakurna) and a cooler ambient mantle as revealed from the entrained xenoliths, constitute important limitations for a plume model earlier proposed for the genesis of these kimberlites and related magmas. These observations together with a geographical and temporal (Grenvillian) link to the EGMB points towards edge-driven convection as a trigger for kimberlite magmatism- similar to the model proposed for the Mid-Cretaceous kimberlite corridor in North America. However, this model can't explain the coeval formation of sub-continental lithospheric mantle-derived lamproites. As the timing of kimberlite and related magmatism coincides with that of the Grenvillian orogeny and succeeded a magmatic lull of ~360 Myr in the Dharwar Craton during the Mesoproterozoic, we instead, propose that small scale partial melting of heterogeneous mantle caused by plate reorganization during Columbia to Rodinia supercontinent extroversion served as a trigger for this ca. 1.1 Gyr magmatism in the southeastern Indian shield.

Keywords: diamondiferous kimberlites; craton; magmatism; kimberlites related; gyr diamondiferous; trigger

Journal Title: Lithos
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.