LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of pore structure on shale oil accumulation in the lower third member of the Shahejie formation, Zhanhua Sag, eastern China: Evidence from gas adsorption and nuclear magnetic resonance

Photo from wikipedia

Abstract As shale oil occurs primarily in micro–nano pores and fractures, research about the effect of pore structure on shale oil accumulation has great significance for shale oil exploration and… Click to show full abstract

Abstract As shale oil occurs primarily in micro–nano pores and fractures, research about the effect of pore structure on shale oil accumulation has great significance for shale oil exploration and development. The effect of pore structure on shale oil accumulation in the lower third member of the Shahejie formation (Es 3 l ), Zhanhua Sag, eastern China was investigated using gas adsorption, soxhlet extraction, nuclear magnetic resonance (NMR) analysis, and field emission scanning electron microscope (FE-SEM) observation. The results indicated that the samples contained a larger amount of ink-bottle-shaped and slit-shaped pores after extraction than before extraction. The pore volume and specific surface area of the samples were approximately 2.5 times larger after extraction than before extraction. Residual hydrocarbon occurred primarily in the free-state form in pores with diameters of 10–1000 nm, which can provide sufficient pore volume for free hydrocarbon accumulation. Therefore, pores with diameters of 10–1000 nm were regarded as “oil-enriched pores”, which are effective pores for shale oil exploration, whereas pores with diameters smaller than 10 nm were regarded as “oil-ineffective pores”. Samples with only well-developed small pores with diameters smaller than 1000 nm showed high oil saturation, whereas samples with both small pores and also relatively large pores and micro-fractures presented low oil saturation. As the minimum pore size allowing fluid expulsion is 1000 nm, pores with diameters greater than 1000 nm were considered as “oil-percolated pores”. Large pores and micro-fractures are generally interconnected and may even form a complex fracture mesh, which greatly improves the permeability of shale reservoirs and is beneficial to fluid discharge.

Keywords: accumulation; shale oil; pore structure; effect pore; oil

Journal Title: Marine and Petroleum Geology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.