LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pore structural evolution of shale following thermochemical treatment

Photo by cdc from unsplash

Abstract Shales experience heat treatment concurrent with the presence of water or steam during reservoir engineering interventions, such as high pressure water fracking and in-situ combustion of hydrocarbons. This work… Click to show full abstract

Abstract Shales experience heat treatment concurrent with the presence of water or steam during reservoir engineering interventions, such as high pressure water fracking and in-situ combustion of hydrocarbons. This work utilises a novel technique, which is a combination of gas sorption overcondensation and integrated mercury porosimetry experiments, not used before for any type of porous material, to study the pore structure of a shale rock, and its evolution following thermal treatment in the presence of water. Overcondensation allows the extension of gas sorption beyond the limits of conventional experiments to enable direct study of macroporosity. Scanning curve experiments, initiated from the complete boundary desorption isotherm, that can only be obtained for macropores by overcondensation experiments, has revealed details of the relative pore size spatial disposition within the network. In particular, it has been found that the new large voids formed by treatment are shielded by relatively much narrower pore windows. Use of a range of different adsorbates, with differing polarity, has allowed the chemical nature of the pore surface before and after treatment to be probed. Integrated rate of gas sorption and mercury porosimetry experiments have determined the level of the particular contribution to mass transport rates of the newly introduced porosity generated by thermal treatment. Combined CXT and mercury porosimetry have allowed the mapping of the macroscopic spatial distribution of even the new mesoporosity, and revealed the degree of pervasiveness of the new voids that leads to a thousand-fold increase in mass transport on thermal treatment.

Keywords: mercury porosimetry; gas sorption; evolution; treatment; shale; thermal treatment

Journal Title: Marine and Petroleum Geology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.