LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sedimentary processes of shallow-marine turbidite fans: An example from the Huangliu Formation in the Yinggehai Basin, South China Sea

Photo from wikipedia

Abstract The shallow-marine turbidite fans in the Upper Miocene Huangliu Formation of the Yinggehai Basin in the northwestern South China Sea (SCS) provide an excellent opportunity to understand their sedimentary… Click to show full abstract

Abstract The shallow-marine turbidite fans in the Upper Miocene Huangliu Formation of the Yinggehai Basin in the northwestern South China Sea (SCS) provide an excellent opportunity to understand their sedimentary processes in a shelf depositional environment. The down-slope gravity flow processes and along-slope bottom-current reworking processes of shallow-marine turbidite fans were interpreted by using seismic, well logging, core, petrographic, geochemical, and petrophysical data. Several depositional elements were identified in the shallow-marine turbidite fans, namely, channel-fill high-density turbidites (HDTs), channel-fill low-density turbidites (LDTs) and associated frontal splays, sand-rich/mud-rich lobe deposits, and bottom-current reworked channel-fill/lobe deposits. Deep U-shaped (or V-shaped) seismic reflections and low root-mean-square (RMS) amplitudes characterize the channel-fill HDTs that consist of massive fine-grained sandstones with mud clasts. The channel-fill LDTs, characterized by V-shaped or worm-shaped reflections, mostly consist of normally graded, laminated and rippled, very fine-grained sandstones. Frontal splays are generally associated with channel-fill LDTs. The sand-rich lobe deposits show continuous high-amplitude sheet-like reflections and consist of HDTs and LDTs, whereas the mud-rich lobe deposits show continuous moderate-amplitude reflections and consist of muddy debrites. The bottom-current reworked sandstones (BCRSs), which comprise well-sorted, fine-grained sandstones with traction-current structures, are usually located in the upper parts of thick sandbodies. The variability of depositional elements from large-scale channel-fill HDTs with strong basal erosion in fan-1 to small-scale channel-fill LDTs in fan-2 is closely linked with sea-level fluctuations that result in variable gravity-flow energy and sediment input. However, the reoccurrence of large-scale channel-fill HDTs in fan-3 at sea-level highstands may possibly be attributed to enhanced sediment input from the source areas. Down-slope flow transformation from turbidity flows into muddy debris flows within an individual channel-lobe complex (CLC) resulted in a dramatic increase in clay content and resultant decreasing reservoir quality from the channel-fill HDTs to the mud-rich lobe deposits, because muddy sediments are incorporated into the precursor turbidity flows and turbulence is suppressed. Additionally, it is suggested that the widely developed traction-current structures and tidal signatures (double mud layers, mud-draped ripples, discrete wavy bedding, internal truncation surface, and convex-up laminae) are the products of reworking by internal waves and -tides. During periods of sea-level highstands, the upper parts of gravity-flow sandstones would undergo bottom-current reworking, thus resulting in the retransportation of muddy fines and the formation of reworked sandstones with traction-current structures and tidal signatures. In this study, a combination of traction-current structures, tidal signatures, vertical sequences showing sharp upper contacts and non-gradational upper contacts, and trace elements is considered to be convincing diagnostic criteria in distinguishing reworked sandstones from gravity-flow sandstones. The representative bottom-current reworked sandstones should be preferable hydrocarbon targets in further exploration because of their better reservoir properties compared with gravity-flow sandstones. This research offers some insight into gravity-flow processes and bottom-current reworking processes in a shallow marine environment.

Keywords: turbidite fans; channel fill; gravity flow; bottom current; shallow marine; marine turbidite

Journal Title: Marine and Petroleum Geology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.