LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical composition of two mineralogically contrasting Arctic bivalves' shells and their relationships to environmental variables.

Photo from wikipedia

The main goal of this study was to determine the concentrations of trace elements in the mineralogically contrasting shells of two Arctic bivalves: Chlamys islandica and Ciliatocardium ciliatum. Aragonite shells… Click to show full abstract

The main goal of this study was to determine the concentrations of trace elements in the mineralogically contrasting shells of two Arctic bivalves: Chlamys islandica and Ciliatocardium ciliatum. Aragonite shells seem to be more susceptible to the binding of metal ions, which is most likely a result of their crystal lattice structure. We suggest that less biologically controlled aragonite mineralization tends to incorporate more metal impurities into the crystal lattice in waters with a lower pH, where metal ions are more available. Higher concentrations of impurities may further increase the lattice distortion causing lower crystal lattice stability and higher susceptibility to dissolution. Calcitic shells seem to be less prone to bind metal ions than aragonite shells most likely because under strict biological control, the uptake of ions from ambient seawater is more selective; thus, the final crystal lattice is less contaminated by other metals and is more resistant to dissolution.

Keywords: crystal lattice; metal ions; mineralogically contrasting; arctic bivalves; lattice

Journal Title: Marine pollution bulletin
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.