LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition.

Photo from wikipedia

Here we report on the distribution of microplastic contamination in two developed estuaries in the Southeastern United States. Average concentration in intertidal sediments of Charleston Harbor and Winyah Bay, both… Click to show full abstract

Here we report on the distribution of microplastic contamination in two developed estuaries in the Southeastern United States. Average concentration in intertidal sediments of Charleston Harbor and Winyah Bay, both located in South Carolina, U.S.A., was 413.8 ± 76.7 and 221.0 ± 25.6 particles/m2, respectively. Average concentration in the sea surface microlayer of Charleston Harbor and Winyah Bay was 6.6 ± 1.3 and 30.8 ± 12.1 particles/L, respectively. Concentration in intertidal sediments of the two estuaries was not significantly different (p = 0.58), however, Winyah Bay contained significantly more microplastics in the sea surface microlayer (p = 0.02). While microplastic concentration in these estuaries was comparable to that reported for other estuaries worldwide, Charleston Harbor contained a high abundance of black microplastic fragments believed to be tire wear particles. Our research is the first to survey microplastic contamination in Southeastern U.S. estuaries and to provide insight on the nature and extent of contamination in these habitats.

Keywords: microplastic two; charleston harbor; two south; winyah bay; south carolina; distribution

Journal Title: Marine pollution bulletin
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.