LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wastewater discharge drives ARGs spread in the coastal area: A case study in Hangzhou Bay, China.

Photo by dnd_sgn from unsplash

The distribution of 14 ARGs, intI1, and 16S rDNA were analysed in 4 wastewater treatment plants (WWTPs), 2 effluent receiving areas (ERAs), and Hangzhou Bay (HZB). The results showed that… Click to show full abstract

The distribution of 14 ARGs, intI1, and 16S rDNA were analysed in 4 wastewater treatment plants (WWTPs), 2 effluent receiving areas (ERAs), and Hangzhou Bay (HZB). The results showed that each integrated WWTP (IWWTP) received higher abundance of ARGs than pharmaceutical WWTPs (PWWTPs), and IWWTPs removed ARGs more efficiently than PWWTPs. The WWTP effluents greatly contributed to the ARGs pollution in the water environments of the ERAs and HZB, and the total abundance of the ARGs displayed a distance decay pattern. In coastal sediments, more ARGs were accumulated in remote sites. The correlation analysis showed that the occurrence of ARGs was more related to 16S rDNA and intI1 in the WWTPs. Three macrolides resistance genes (ermB, mphA, and vatB) had strong correlations with 16S rDNA and intI1 in all the sample groups. Our study clearly reveals the link between land WWTPs discharge and emerging pollution of ARGs in coastal environments.

Keywords: drives args; hangzhou bay; 16s rdna; discharge drives; wastewater discharge; discharge

Journal Title: Marine pollution bulletin
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.