Japan recently announced plans to discharge over 1.2 million tons of radioactive water from the Fukushima Daiichi Nuclear Power Plant (FDNPP) into the Pacific Ocean. The contaminated water can poses… Click to show full abstract
Japan recently announced plans to discharge over 1.2 million tons of radioactive water from the Fukushima Daiichi Nuclear Power Plant (FDNPP) into the Pacific Ocean. The contaminated water can poses a threat to marine ecosystems and human health. To estimate the impact of the plan, here, we developed a three-dimensional global model to track the transport and dispersion of tritium released from the radioactive water of the FDNPP. The pollution scenarios for four release durations (1 month, 1 year, 5 years, and 10 years) were simulated. The simulation results showed that for the release in short-duration scenarios (1 month and 1 year), the peak plume with high tritium concentration shifted with the currents and finally reached the northeastern Pacific. For the long-duration scenarios (5 years and 10 years), the peak plume of the contaminated water was confined to coastal regions east of Japan.
               
Click one of the above tabs to view related content.