To assess the aquaculture-induced sediment conditions associated with sulfur cycles, shifts in bacterial communities across farming stages were investigated. The sulfate reduction rate (SRR), and concentrations of acid volatile sulfide… Click to show full abstract
To assess the aquaculture-induced sediment conditions associated with sulfur cycles, shifts in bacterial communities across farming stages were investigated. The sulfate reduction rate (SRR), and concentrations of acid volatile sulfide (AVS) and H2S were significantly higher at the mid- and post-farming stages than at the early stage, indicating that the aquaculture effects persist even after harvest. Incomplete organic carbon-oxidizing sulfate-reducing bacteria (IO-SRB) affiliated with Desulfobulbaceae, and gammaproteobacterial sulfur oxidizing bacteria (SOB) (Thiohalobacter, Thioprofundum, and Thiohalomonas) were dominant during the early stage, whereas fermenting bacteria (Bacteroidetes and Firmicutes) and complete oxidizing SRB (CO-SRB) belonging to Desulfobacteraceae, and epsilonproteobacterial SOB (Sulfurovum) dominated during the mid- and post-stages. The shift in SRB and SOB communities well reflected the anoxic and sulfidic conditions of farm sediment. Especially, the Sulfurovum-like SOB correlated highly and positively with H2S, AVS, and SRR, suggesting that they could be relevant microbiological proxies to assess sulfidic conditions in farm sediment.
               
Click one of the above tabs to view related content.