LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shifts in benthic bacterial communities associated with farming stages and a microbiological proxy for assessing sulfidic sediment conditions at fish farms.

Photo from wikipedia

To assess the aquaculture-induced sediment conditions associated with sulfur cycles, shifts in bacterial communities across farming stages were investigated. The sulfate reduction rate (SRR), and concentrations of acid volatile sulfide… Click to show full abstract

To assess the aquaculture-induced sediment conditions associated with sulfur cycles, shifts in bacterial communities across farming stages were investigated. The sulfate reduction rate (SRR), and concentrations of acid volatile sulfide (AVS) and H2S were significantly higher at the mid- and post-farming stages than at the early stage, indicating that the aquaculture effects persist even after harvest. Incomplete organic carbon-oxidizing sulfate-reducing bacteria (IO-SRB) affiliated with Desulfobulbaceae, and gammaproteobacterial sulfur oxidizing bacteria (SOB) (Thiohalobacter, Thioprofundum, and Thiohalomonas) were dominant during the early stage, whereas fermenting bacteria (Bacteroidetes and Firmicutes) and complete oxidizing SRB (CO-SRB) belonging to Desulfobacteraceae, and epsilonproteobacterial SOB (Sulfurovum) dominated during the mid- and post-stages. The shift in SRB and SOB communities well reflected the anoxic and sulfidic conditions of farm sediment. Especially, the Sulfurovum-like SOB correlated highly and positively with H2S, AVS, and SRR, suggesting that they could be relevant microbiological proxies to assess sulfidic conditions in farm sediment.

Keywords: farming stages; bacterial communities; shifts benthic; communities associated; sediment conditions; benthic bacterial

Journal Title: Marine pollution bulletin
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.