Buried subsea pipelines under high temperature conditions tend to relieve their axial compressive force by forming localised upheaval buckles. This phenomenon is traditionally studied as a kind of imperfect column… Click to show full abstract
Buried subsea pipelines under high temperature conditions tend to relieve their axial compressive force by forming localised upheaval buckles. This phenomenon is traditionally studied as a kind of imperfect column buckling problem. We study upheaval buckling as a genuinely localised buckling phenomenon without making any ad hoc assumptions on the shape of the buckled pipeline. We combine this buckling analysis with a detailed state-of-the-art nonlinear pipe-soil interaction model that accounts for the effect of uplift peak soil resistance for buried pipelines. This allows us to investigate the effect of cover depth of subsea pipelines on their load-deflection behaviour. Furthermore, the influence of axial and uplift peak soil resistance on the localised upheaval behaviour is investigated and the maximum axial compressive stress during the buckling process is discussed. Parameter studies reveal a limit to the temperature difference for safe operation of the pipeline. Localised upheaval buckling may then occur if the pipe is sufficiently imperfect or sufficiently dynamically perturbed.
               
Click one of the above tabs to view related content.