Abstract The hull excitation generated by marine propellers constitutes one of the most significant vibration sources affecting comfort on passenger ships. Consequently, the evaluation of the propeller-generated excitation through reliable… Click to show full abstract
Abstract The hull excitation generated by marine propellers constitutes one of the most significant vibration sources affecting comfort on passenger ships. Consequently, the evaluation of the propeller-generated excitation through reliable numerical tools during the preliminary stage of ship design is fundamental. The Holden Method (HM) is an empirical tool utilized to calculate the propeller-induced pressure distribution on a ship hull. The present paper validates the HM, which is applied to a twin-screw, 54-m super-yacht. Finite Element Analysis (FEA) is used to benchmark the HM numerical predictions against a set of full-scale vibration measures. The outcomes show that the magnitude of the propeller-induced dynamic excitation predicted by the HM is overestimated. Thereafter, the calibrated propeller-induced forces and the diesel engine excitation are applied to the FE model to perform a series of forced vibration analyses and estimate the global structural damping coefficient of the super-yacht. The study highlights the necessity of developing new empirical methodologies, analogous to the HM, to be applied to modern small luxury vessels.
               
Click one of the above tabs to view related content.