LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of mooring systems in the context of an integrated design methodology

Photo by anniespratt from unsplash

Abstract This work describes an enhanced mooring optimization procedure, oriented towards recent floating production systems (FPS) for oil & gas exploitation in ultra-deep-water scenarios, which may present a large number… Click to show full abstract

Abstract This work describes an enhanced mooring optimization procedure, oriented towards recent floating production systems (FPS) for oil & gas exploitation in ultra-deep-water scenarios, which may present a large number of risers in an asymmetric layout. Acknowledging that the risers are the key component of an FPS, the optimization procedure is associated to an integrated mooring-riser design methodology; thus, instead of simply minimizing the platform offsets and/or the costs of the mooring system itself, one of the main objectives is to obtain a mooring configuration that ensures the integrity of the risers. Other highlights of the optimization procedure include the following aspects: Enhancements in the modeling of the optimization problem (including the definition of design variables, objective function and constraints that are relevant for such actual applications); The use of the PSO optimization algorithm associated to the e-constrained method to efficiently handle the constraints; Enhancements in the evaluation of candidate solutions, by full nonlinear time-domain dynamic Finite Element simulations with coupled models; and the implementation in a parallel computing environment to deal with the high associated computational costs. A case study considering an FPS representative of actual applications in deepwater scenarios is presented to illustrate the practical application of the optimization tool.

Keywords: methodology; optimization mooring; optimization; optimization procedure; design methodology

Journal Title: Marine Structures
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.