Abstract The structure and crystallography of martensite-austenite (M-A) constituent in the intercritically reheated coarse-grained heat affected zone (ICCGHAZ) of X100 (690 MPa) pipeline steel weld joint was studied via multi-scale characterization.… Click to show full abstract
Abstract The structure and crystallography of martensite-austenite (M-A) constituent in the intercritically reheated coarse-grained heat affected zone (ICCGHAZ) of X100 (690 MPa) pipeline steel weld joint was studied via multi-scale characterization. The results suggested that majority of the necklace-type M-A constituent in the ICCGHAZ preferred to form lamellar lath structure, which primarily consisted of lath martensite (87%). Only small fraction of retained austenite (9%) was found between martensite laths. The retained austenite had K-S orientation relationship with its neighboring martensite: (10-1)M // (11-1)γ and [111]M // [011]γ. Adjacent martensite laths within M-A constituent had large misorientation but no fixed crystallographic orientation relationship which implied that martensite laths may nucleate independently and encounter with each other during growth. M-A constituent and matrix microstructure belonged to different prior austenite grains. The martensite laths within the M-A constituent did not inherit the crystallographic orientation of the parent matrix during the intercritical reheating and subsequent cooling process of the second pass welding.
               
Click one of the above tabs to view related content.