LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys

Photo from archive.org

Abstract Three wrought Mg-5Al alloys with different Mn contents (0.5, 1.4, and 3.1 wt%) were examined and compared with a reference wrought Mg-5Al alloy. Additions of Mn decreased the grain size… Click to show full abstract

Abstract Three wrought Mg-5Al alloys with different Mn contents (0.5, 1.4, and 3.1 wt%) were examined and compared with a reference wrought Mg-5Al alloy. Additions of Mn decreased the grain size and caused precipitation of various Al-Mn intermetallide with different Al/Mn ratio. The corrosion resistance of the Mn-containing alloys significantly increased in comparison to the reference alloy. This contributed to a reduced harmful effect of the impurities, refined microstructure and formation of corrosion products layer. However, further increasing of Mn content caused greater precipitation of the Al-Mn intermetallics, which in its turn increased the galvanic micro-coupling. The alloy with 3.1 wt% Mn additions formed a relatively protective oxide film, which balances the increased number of cathodic particles, and its corrosion rate was very close to that of alloy with 1.4 wt% Mn content.

Keywords: corrosion; additions microstructure; microstructure corrosion; 5al alloys; wrought 5al; relation additions

Journal Title: Materials Characterization
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.