LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of the lattice defects and crystalline domain size in carbon nanotube metal matrix composites processed by severe plastic deformation

Photo by neonbrand from unsplash

Abstract Nickel (Ni) and carbon nanotube (CNT)-reinforced Ni-matrix composites were processed by high-pressure torsion (HPT). The evolution of dislocation densities and crystalline domain sizes were analyzed by means of X-ray… Click to show full abstract

Abstract Nickel (Ni) and carbon nanotube (CNT)-reinforced Ni-matrix composites were processed by high-pressure torsion (HPT). The evolution of dislocation densities and crystalline domain sizes were analyzed by means of X-ray diffraction (XRD) using Whole Powder Pattern Modelling (WPPM). The composites showed an evident gradient in the microstructural refinement and in hardness with increasing applied strain. This effect was found to be more pronounced in the presence of higher amounts of CNT. In particular, a higher amount of screw dislocations was measured by WPPM after HPT. It was concluded that the strengthening of CNT-MMC processed by HPT is mainly due to work hardening and grain refinement, both mechanisms being assisted by the presence of CNT, with marginal contribution of particle strengthening.

Keywords: matrix composites; crystalline domain; carbon nanotube; composites processed

Journal Title: Materials Characterization
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.