LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide

Photo from archive.org

Abstract Graphene oxide is considered one of the most significant material due to its capability of be a reliable and potentially scalable precursor of graphene. Several processes of graphene mass… Click to show full abstract

Abstract Graphene oxide is considered one of the most significant material due to its capability of be a reliable and potentially scalable precursor of graphene. Several processes of graphene mass production are getting involved into very polluting oxidants, toxic gases emissions, explosions and deflagrations or even long-time reactions. In the present work, two different routes were carried out in order to obtain reduced graphene oxide. On the one hand, a modification of Improved Hummers method whose modifications efficiently reduce the reaction time and the amount of chemical reagents. On the other hand, an environmentally friendly, fast and economic method which use potassium ferrate as oxidizing agent. Products obtained by both methods were characterized with different techniques: Raman spectroscopy, Scanning Electron Microscopy, FT-IR, elemental analysis (EDX), X-Ray Diffraction, Thermogravimetric Analysis, DSC and particle size analyzer. Results acquired by the modified Improved Hummers Method are more effective than that one based on potassium ferrate as oxidizing agent. However, in spite of the lower oxidation degree achieved in the last one, the resulting material suffered important physicochemical structural changes which are explained in detail. These changes could be of interest for anticipating future applications of graphene-based materials.

Keywords: graphene oxide; different scalable; study different; comparative study; reduced graphene

Journal Title: Materials Chemistry and Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.