LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles

Photo from archive.org

Abstract In this study, silver nanoparticles coated with sericin (S-AgNPs) were adsorbed on poly (ethylene terephthalate)-g-poly(hydroxyethylmethacrylate) (PET-g-HEMA) nanofibers and the use of the obtained material as wound dressing was investigated.… Click to show full abstract

Abstract In this study, silver nanoparticles coated with sericin (S-AgNPs) were adsorbed on poly (ethylene terephthalate)-g-poly(hydroxyethylmethacrylate) (PET-g-HEMA) nanofibers and the use of the obtained material as wound dressing was investigated. PET fibers were firstly grafted with HEMA for varying hydrophobic nature of PET. A wound dressing material was obtained from polymer solution of this copolymer with electrospinning under certain conditions. Then, negatively charged S-AgNPs were adsorbed on the surface of the nanofiber membranes. Scanning electron microscope (SEM), UV-Vis, X-ray fluorescence (XRF), thermal, mechanical, antibacterial and cytotoxicity analyzes of the modified membranes have been examined. It was found that the modified nanofibers with S-AgNPs had antimicrobial effects on gram positive and gram negative bacteria. The viability rates of the cells incubated with the modified material extract did not decrease below 70% after 1 and 3 days incubation in MTT test. In-vivo studies aimed at evaluating the performance of modified nanofiber surface were performed using Sprague-Dawley male rats. The healing process of deep burn wounds created in rats with different materials was monitored during the 21 days and it was found that the produced nanofibers was more effective in wound healing than the control group and had a healing rate close to a commercially used cover material.

Keywords: dressing material; wound healing; silver nanoparticles; pet; material

Journal Title: Materials Chemistry and Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.