Abstract BiVO4 has attracted great attention as a semiconductor for Photoelectrochemical (PEC) water splitting because of its low cost, good stability, and suitable band gap of 2.4 eV. In this… Click to show full abstract
Abstract BiVO4 has attracted great attention as a semiconductor for Photoelectrochemical (PEC) water splitting because of its low cost, good stability, and suitable band gap of 2.4 eV. In this research, the contribution of g-C3N4@ZnO on BiVO4 photoelectrochemical performance, light absorption, charge transportation, and morphology were investigated. Incorporation of g-C3N4/ZnO as underlying layer in heterojunction with BiVO4 boosted the photocurrent from ∼ 0.21 mA cm−2 for bare BiVO4 to 0.65 mA cm−2 for g-C3N4@ZnO/BiVO4 heterojunction composite structure at 1.23 V versus Ag/AgCl. The C and N elements derived from g-C3N4 on ZnO resulted in a tenacious interactions, lowered charge transfer resistance and increased light absorption of BiVO4. The high photoelectrochemical performance, together with good electrochemical impedance spectroscopy parameters and stability reveals g-C3N4/ZnO composite to be a suitable candidate in enhancing the performance of BiVO4 for PEC solar water splitting applications.
               
Click one of the above tabs to view related content.