LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity

Photo from wikipedia

Abstract Three-dimensional (3D) interpenetrating network graphene/copper (G/Cu) composites were fabricated by in-situ growth of G on nanoporous Cu followed by rolling and sintering processes. In-situ growth of G network generate… Click to show full abstract

Abstract Three-dimensional (3D) interpenetrating network graphene/copper (G/Cu) composites were fabricated by in-situ growth of G on nanoporous Cu followed by rolling and sintering processes. In-situ growth of G network generate an intimate interface between G and Cu matrix, which is not only essential for high load transfer efficiency but also minimize the interfacial resistance. Moreover, the 3D interpenetrating network structure is propitious to fully exert the additional electronic transport pathway and load-bearing of 3D G, as well as helping to generate and store dislocation without initiating cracks. Consequently, the obtained composite exhibits an elegant combination of enhanced tensile strength (354 MPa), extraordinary ductility (16.5% elongation) and robust conductivity (98% IACS).

Keywords: three dimensional; network; dimensional interpenetrating; network graphene; interpenetrating network; graphene copper

Journal Title: Materials Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.