Abstract Syntactic foams are widely used in damage tolerance and low-density applications. In present work compressive behavior of 3D printed three-phase syntactic foams under quasi-static strain rates (0.001, 0.01 and… Click to show full abstract
Abstract Syntactic foams are widely used in damage tolerance and low-density applications. In present work compressive behavior of 3D printed three-phase syntactic foams under quasi-static strain rates (0.001, 0.01 and 0.1 s−1) are investigated. Extruded filaments of High density polyethylene (HDPE) with environmentally pollutant fly ash cenospheres (0, 20, 40 and 60 vol%) are used for 3D printing. Micrography reveal that syntactic foam filament and 3D printed samples are three phase systems comprising matrix, cenosphere and porosity. Matrix porosity of about 7% makes these foams lightweight and suitable for buoyant applications. The compressive properties are extracted from the stress-strain plots. It is observed that modulus and specific modulus increases with strain rate and cenosphere content. Specific compressive strength increases with strain rate and decrease with cenosphere content.
               
Click one of the above tabs to view related content.