LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries

Photo from wikipedia

Abstract A new design for conjugation and crosslinking combined with a conjugated polymer and its application for high capacity Li-ion battery are demonstrated. Polyfluorene (PF), poly(phenylene) (PP), with lateral substituents,… Click to show full abstract

Abstract A new design for conjugation and crosslinking combined with a conjugated polymer and its application for high capacity Li-ion battery are demonstrated. Polyfluorene (PF), poly(phenylene) (PP), with lateral substituents, namely carboxylic acids, as a potential building block for conjugation was synthesized and characterized. The synthesis was achieved through Suzuki polycondensation reaction in the presence of Pd(PPh3)4 catalyst by using dibromo benzoic acid in conjunction with dioctylfluorene-diboronic acid bis(1,3-propanediol) ester. Thermal chemical cross-linking between carboxylic acid in the polymer backbone and free hydroxyl groups in poly(vinyl alcohol) (PVA) has been performed in the presence of Si. This approach enables a polymer binder with multi-functionality providing a high electronic conductivity and good cycling stability. Overall, we report on a Si-anode with capacity of 1932 mAh/g at C/3, demonstrating the improvement of the electrode using gel polymer binder.

Keywords: interconnected conductive; capacity; high capacity; binder; anode; ion

Journal Title: Materials Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.