LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiferroic properties of Bi0.95R0.05FeO3 polycrystalline films on the glass substrates (R = La, Pr, Nd, Sm, and Ho)

Photo by briangarrityphoto from unsplash

Abstract Multiferroic properties of Bi0.95R0.05FeO3 films (R = La, Pr, Nd, Sm, and Ho) (BRFO) on glass substrates at reduced formation temperature of 450 °C via pulsed laser deposition have been investigated. XRD… Click to show full abstract

Abstract Multiferroic properties of Bi0.95R0.05FeO3 films (R = La, Pr, Nd, Sm, and Ho) (BRFO) on glass substrates at reduced formation temperature of 450 °C via pulsed laser deposition have been investigated. XRD result shows that perovskite phase is found for all studied BRFO films, but an additional phase, Bi2Fe4O9, coexists for Ho-doped BFO film. For all BRFO films, a fine microstructure with a flat surface is observed. The studied BRFO polycrystalline films exhibit coexistence of good ferroelectric and ferromagnetic properties. The remanent polarization (2Pr) of 57–113 μC/cm2 and electrical coercive field of 210–384 kV/cm is obtained, while the saturation magnetization (Ms) of 6.6–20.3 emu/cm3 and coercivity of 400–600 Oe is attained. The relationship between 2Pr and the ionic radius of R3+ for the BRFO films indicates that R3+ ionic radius may mainly dominate the polarization of BRFO films. The change of Ms with R is related to the magnetic moment of the doped R3+ ion. Besides, the leakage mechanism of BRFO films with R is also discussed. The result in this study suggests multiferroic properties of Bi0.95R0.05FeO3 polycrystalline films could be well tuned by R.

Keywords: bi0 95r0; properties bi0; multiferroic properties; 95r0 05feo3; polycrystalline films; brfo films

Journal Title: Materials Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.