LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel efficient electromagnetic absorber with MoO3@Fe2(MoO4)3 core-shell nanobelts insert in reduced graphene oxide nanosheets

Photo by weichaist from unsplash

Abstract A composite of MoO3@Fe2(MoO4)3 and reduced graphene oxide (rGO) (MoO3@Fe2(MoO4)3/rGO) was prepared for application as a high-efficiency electromagnetic wave (EMW) absorbing material. MoO3 acted as the core that forms… Click to show full abstract

Abstract A composite of MoO3@Fe2(MoO4)3 and reduced graphene oxide (rGO) (MoO3@Fe2(MoO4)3/rGO) was prepared for application as a high-efficiency electromagnetic wave (EMW) absorbing material. MoO3 acted as the core that forms a conductive network between the rGO layers and Fe2(MoO4)3 acted as the shell of the MoO3@Fe2(MoO4)3 heterostructure that consumes the incident EMW by magnetic loss. The relationship between the chemical composition, micromorphology, and absorption performance of the composite was investigated in detail. The MoO3@Fe2(MoO4)3/rGO-30 wt% composite with a thickness of 1.91 mm showed a minimum reflection loss of −71.3 dB at 14.4 GHz and an effective absorption bandwidth of up to 5.8 GHz (12.2–18.0 GHz). This study provides a new pathway for the synthesis of novel effective EMW-absorbing materials with low thickness, high strength, large bandwidth, and light weight.

Keywords: reduced graphene; fe2 moo4; moo3 fe2; graphene oxide

Journal Title: Materials Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.