The rapid development in materials science and engineering requests the manufacturing of materials in a more rational and designable manner. Beyond traditional manufacturing techniques, such as casting and coating, digital… Click to show full abstract
The rapid development in materials science and engineering requests the manufacturing of materials in a more rational and designable manner. Beyond traditional manufacturing techniques, such as casting and coating, digital control of material morphology, composition, and structure represents a highly integrated and versatile approach. Digital manufacturing systems enable users to fabricate freeform materials, which lead to new functionalities and applications. Digital additive manufacturing (AM), which is a layer-by-layer fabrication approach to create three-dimensional (3D) products with complex geometries, is changing the way materials manufacturing is approached in traditional industry. More recently, digital printing of chemically synthesized colloidal nanoparticles has paved the way towards manufacturing a class of designer nanomaterials with properties precisely tailored by the nanoparticles and their interactions down to atomic scales. Despite the tremendous progress being made so far, multiple challenges have prevented the broader applications and impacts of the digital manufacturing technologies. This review features cutting-edge research in the development of some of the most advanced digital manufacturing methods. We focus on outlining major challenges in the field and providing our perspectives on the future research and development directions.
               
Click one of the above tabs to view related content.