LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radical-initiated oxidative conversion of methane to methanol over metallic iron and copper catalysts

Photo from wikipedia

Abstract Oxidative conversion of methane gas into value-added chemicals such as methanol is of great interest due to high economic feasibility of liquid fuel molecules for storage and transportation purpose.… Click to show full abstract

Abstract Oxidative conversion of methane gas into value-added chemicals such as methanol is of great interest due to high economic feasibility of liquid fuel molecules for storage and transportation purpose. Activation and conversion of methane occur at very high temperatures due to its strong C H bonding and hence the process is highly energy intensive. Therefore, homolytic cleavage of methane to produce CH3 and H radicals and subsequent conversion to methanol could be an alternative way to catalyze the reaction through a less energy-intensive process. In this work, radical-based conversion of methane to methanol was conducted in water-diluted 1-butyl-3-methylimidazolium chloride ionic liquid (IL) using metallic iron and copper as catalysts. The acidic IL, besides producing the high oxidation potential radicals from K2S2O8, enhanced their longevity. ZV Cu was found to be highly active in the reaction catalyzing with steady rate at a lower activation energy (Ea = 31.5 kJ/mol) and retains its oxidation state even after the reaction. On the other hand, ZV Fe, catalyzed the reaction with slightly slow initial rate ultimately resulting in moderate activation energy (40.77 kJ/mol). However, it was observed that ZV Fe fails to retain its oxidation state after reaction.

Keywords: methane methanol; oxidative conversion; conversion; methane; reaction; conversion methane

Journal Title: Molecular Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.