LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics

Photo from wikipedia

Abstract Prussian blue analogs (PBAs) exhibit potential as low-cost and eco-friendly nanocatalysts that can be fabricated with ease. However, the PBA framework structure suffers from poor electronic conductivity, which limits… Click to show full abstract

Abstract Prussian blue analogs (PBAs) exhibit potential as low-cost and eco-friendly nanocatalysts that can be fabricated with ease. However, the PBA framework structure suffers from poor electronic conductivity, which limits the catalytic efficiency for this class of materials. Noble metals represent an alternative class of materials that display inherent catalytic activity but suffer from aggregation, ultimately reducing the amount of accessible catalytic sites. Herein, we demonstrate a combinatory approach that circumvents the known disadvantages with these classes of catalytic materials in which PBA-supported nanocatalysts were synthesized. These composite materials exhibit excellent catalytic activity for the reduction of nitroaromatics to aminoaromatics while displaying long-term cycling stability, which is attributed to the availability of multiple electron transfer pathways. Overall, this work opens the study on the assembly of PBA-supported heterogeneous nanocatalysts and potentially paves the way toward future applications.

Keywords: transfer pathways; electron transfer; prussian blue; multiple electron; catalytic activity; activity

Journal Title: Molecular Catalysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.