LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic effect of copper nanocrystals-nanoparticles incorporated in a porous organic polymer for the Ullmann C-O coupling r eaction

Photo from wikipedia

Abstract A quinoxaline-based porous organic polymer (Q-POP) as a mesoporous organic copolymer was developed as a new platform for the immobilization of CuNPs and copper nanocrystals. The prepared materials were… Click to show full abstract

Abstract A quinoxaline-based porous organic polymer (Q-POP) as a mesoporous organic copolymer was developed as a new platform for the immobilization of CuNPs and copper nanocrystals. The prepared materials were characterized by FT-IR, XRD, N2 adsorption-desorption isotherms, ICP, TGA, SEM, HR-TEM, EDX, and single-crystal X-ray crystallography. The obtained catalyst presented extraordinary catalytic activity towards Ullmann C O coupling reactions with high surface area, hierarchical porosity, and excellent thermal and chemical stability. Due to its high porosity, and synergistic effect of copper nanocrystals incorporated in the polymer composite, the as-synthesized catalyst was successfully utilized for the Ullmann C O coupling reaction of phenols and different aryl halides to prepare various diaryl ether derivatives. All types of aryl halides (except aryl fluorides) were screened in the Ullmann C O coupling reaction with phenols to produce diaryl ethers in good to excellent yields (70–97 %), and it was found that aryl iodides have the best results. Besides, due to the strong interactions between CuNPs, N, and O-atoms of quinoxaline moiety existing in the polymeric framework, the copper leaching from the support was not observed. Furthermore, the catalyst was recycled and reused for five consecutive runs without significant activity loss.

Keywords: copper nanocrystals; organic polymer; copper; ullmann coupling; porous organic; synergistic effect

Journal Title: Molecular Catalysis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.