LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bisphenol A affects trophoblast invasion by inhibiting CXCL8 expression in decidual stromal cells

Photo from wikipedia

Bisphenol A (BPA), an environmental endocrine-disrupting organic chemical, has been positively associated with the rate of implantation failure of in vitro fertilization. However, the underlying mechanisms remain unclear. To reveal the… Click to show full abstract

Bisphenol A (BPA), an environmental endocrine-disrupting organic chemical, has been positively associated with the rate of implantation failure of in vitro fertilization. However, the underlying mechanisms remain unclear. To reveal the impact and the underlying mechanism of BPA on the crosstalk between trophoblast and decidual stromal cells (DSCs), we determined whether BPA was able to affect trophoblast invasion in vitro. We found that BPA significantly inhibited CXCL8 expression in DSCs, which hindered trophoblast invasion, and activated the phosphorylation of ERK in DSCs. U0126, an inhibitor of ERK activation, remarkably rescued trophoblast invasion and the inhibition of CXCL8 expression caused by BPA treatment. Moreover, the nuclear estrogen receptor antagonist ICI 182,780 and transmembrane G protein-coupled receptor GPR30 (membrane estrogen receptor) antagonist G15 significantly blocked the phosphorylation of ERK and reversed the reduction of trophoblast invasion. In brief, BPA activated ERK through nuclear and membrane estrogen receptors and inhibited CXCL8 expression in DSCs, thereby affecting their regulation of trophoblast invasion.

Keywords: cxcl8 expression; trophoblast invasion; invasion; stromal cells; decidual stromal

Journal Title: Molecular and Cellular Endocrinology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.