LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway.

Photo by markusspiske from unsplash

Ischemic stroke is a common cerebrovascular disease caused by insufficient blood supply to the brain. In recent years, studies have demonstrated that microRNAs (miRNAs) are involved in a variety of… Click to show full abstract

Ischemic stroke is a common cerebrovascular disease caused by insufficient blood supply to the brain. In recent years, studies have demonstrated that microRNAs (miRNAs) are involved in a variety of biological processes in the nervous system. However, the effects of miR-202-5p on cerebral ischemic stroke injury have not been completely elucidated. In our study, N2a cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment, and middle cerebral artery occlusion (MCAO) rat models were constructed. Our results indicated that decreased miR-202-5p expression was connected to N2a cells after OGD/R-induced injury and rats after MCAO. In addition, high miR-202-5p expression increased proliferation and prevented apoptosis and autophagy of OGD/R-treated N2a cells, while also effectively decreasing the infarct volume in MCAO model rats. We validated the interplay between miR-202-5p and eukaryotic translation initiation factor 4E (eIF4E), and found that miR-202-5p downregulated eIF4E by targeted combination. Moreover, we demonstrated that miR-202-5p accelerated proliferation and suppressed autophagy of OGD/R-induced N2a cells by targeting eIF4E. Meanwhile, our other results suggest that upregulation of miR-202-5p may activate the Akt/GSK-3β pathway in ischemic brain injury. Our findings suggest that miR-202-5p may serve as a protective agent for ischemia-reperfusion injury in stroke via eIF4E.

Keywords: ogd induced; induced injury; n2a cells; mcao; injury; mir 202

Journal Title: Molecular and cellular probes
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.