LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting correlations in abrasive waterjet cutting parameters of Lanthanum phosphate/Yttria composite by response surface methodology

Photo by shapelined from unsplash

Abstract The machining property of Lanthanum phosphate/Yttria prepared by the aqueous sol-gel process is evaluated using abrasive waterjet machine. Jet pressure, Stand-off distance, and traverse speed are taken as the… Click to show full abstract

Abstract The machining property of Lanthanum phosphate/Yttria prepared by the aqueous sol-gel process is evaluated using abrasive waterjet machine. Jet pressure, Stand-off distance, and traverse speed are taken as the governing parameters on material removal rate, kerf angle and surface profile roughness. Silicon carbide 80 mesh size is taken as abrasive. A linear cut is done on the composite of geometry O30 mm and 7 mm thickness for the L20 orthogonal array to study the process correlation that exhibits between the independent parameters. The equations are predicted through response surface methodology are evaluated. From the observations, jet pressure has found to have a significant effect on material removal rate and kerf angle whereas, traverse speed significantly affects surface profile to the greater extent. The microscopic examination of the kerf surface reveals the plastic deformation surface, wear track and presence of more numbers of valley and peaks regions in the top kerf surface. The study on this new functional composite will improve the utilization of the composite and will be a database for the researchers, to improve and extends the usage of the composite for different applications.

Keywords: methodology; surface; abrasive waterjet; response surface; phosphate yttria; lanthanum phosphate

Journal Title: Measurement
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.