LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering

Photo by calum_mac from unsplash

Abstract Geomagnetic signals are susceptible to random magnetic signals and short-term, high-amplitude magnetic signals. These interferences can bring nonlinear error and degrade the navigation accuracy. Traditional Empirical Mode Decomposition (EMD)… Click to show full abstract

Abstract Geomagnetic signals are susceptible to random magnetic signals and short-term, high-amplitude magnetic signals. These interferences can bring nonlinear error and degrade the navigation accuracy. Traditional Empirical Mode Decomposition (EMD) can reduce the nonlinear error of geomagnetic signal. However, with the mode mixing and the poor stability of finding dividing point by using energy criterion, traditional EMD filter is limited. In this paper, multi-scale eigenvalues EMD (ME-EMD) is proposed. To solve the problem of mode mixing, multi-scale eigenvalues are analyzed to extract the interference signal. To find the precise dividing point, autocorrelation ratio is defined. ME-EMD estimates the SNR of intrinsic mode function (IMF) and finds the dividing point. Experiments demonstrate that ME-EMD can restrain the mode mixing and find the optimal dividing point, and the filter effect of ME-EMD is better than EMD with morphology, and Modified Ensemble EMD, etc., when the geomagnetic signal is interfered by transient signal. ME-EMD reduced the Root Mean Square Error from 23.3041 μ T to 1.2689 μ T .

Keywords: signal; multi scale; geomagnetic signal; emd; mode; scale eigenvalues

Journal Title: Measurement
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.