LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian uncertainty evaluation of stitching interferometry for cylindrical surface

Photo from wikipedia

Abstract Uncertainty evaluation is one of the most important concepts in metrological characterizations. This paper proposes a method for uncertainty evaluation of measurements of cylindrical surfaces by means of stitching… Click to show full abstract

Abstract Uncertainty evaluation is one of the most important concepts in metrological characterizations. This paper proposes a method for uncertainty evaluation of measurements of cylindrical surfaces by means of stitching interferometry. The proposed method is based on the Bayesian statistical analysis. The prior deviation for a tested surface is determined by both calculation of standard deviation through multiple measurements of a single sub-aperture and calibration of the optical system error. The probability distribution functions (PDF) of the prior and real misalignment error and measured data of the aperture are derived according to the stitching model. Simulated observations are approximated with the Gibbs Sampler using the Markov Chain Monte Carlo (MCMC) method. Our proposed method is a promising alternative to the ordinary least square technique (LST) with the maximum likelihood estimation (MLE) for obtaining the uncertainty of the misalignment and measurement error in the stitching results. Moreover, it can take the inevitable environment errors into account. The prediction of the uncertainty interval makes our method more attractive in industrial applications.

Keywords: stitching interferometry; uncertainty evaluation; surface; uncertainty

Journal Title: Measurement
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.