LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine learning based soil erosion susceptibility prediction using social spider algorithm optimized multivariate adaptive regression spline

Photo from wikipedia

Abstract This study proposes an advanced data-driven method which relies on the Multivariate Adaptive Regression Splines (MARS) machine learning and Social Spider Algorithm (SSA) metaheuristic for predicting soil erosion susceptibility.… Click to show full abstract

Abstract This study proposes an advanced data-driven method which relies on the Multivariate Adaptive Regression Splines (MARS) machine learning and Social Spider Algorithm (SSA) metaheuristic for predicting soil erosion susceptibility. The MARS is employed to infer a decision boundary that separates the input data space into two distinctive regions of ‘erosion’ and ‘non-erosion’. Meanwhile, the SSA metaheuristic is aimed at optimizing the MARS performance by automatically fine-tuning its hyper-parameters. The proposed SSA optimized MARS method, named as SSAO-MARS, is trained and validated by a set of 236 samples of soil plot conditions associated with their corresponding erosion status. The research finding shows that the newly developed SSAO-MARS can attain good predictive outcomes with classification accuracy rate of roughly 96%. Therefore, the newly developed model can be a useful tool to assist land management agencies.

Keywords: machine learning; adaptive regression; erosion; social spider; spider algorithm; multivariate adaptive

Journal Title: Measurement
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.