LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-accuracy classification of thread quality in tapping processes with ensembles of classifiers for imbalanced learning

Photo by martindorsch from unsplash

Abstract Industrial threading processes that use cutting taps are in high demand. However, industrial conditions differ markedly from laboratory conditions. In this study, a machine-learning solution is presented for the… Click to show full abstract

Abstract Industrial threading processes that use cutting taps are in high demand. However, industrial conditions differ markedly from laboratory conditions. In this study, a machine-learning solution is presented for the correct classification of threads, based on industrial requirements, to avoid expensive manual measurement of quality indicators. First, quality states are categorized. Second, process inputs are extracted from the torque signals including statistical parameters. Third, different machine-learning algorithms are tested: from base classifiers, such as decision trees and multilayer perceptrons, to complex ensembles of classifiers especially designed for imbalanced datasets, such as boosting and bagging decision-tree ensembles combined with SMOTE and under-sampling balancing techniques. Ensembles demonstrated the lowest sensitivity to window sizes, the highest accuracy for smaller window sizes, and the greatest learning ability with small datasets. Fourth, the combination of models with both high Recall and high Precision resulted in a reliable industrial tool, tested on an extensive experimental dataset.

Keywords: quality; high accuracy; accuracy classification; ensembles classifiers

Journal Title: Measurement
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.