This study investigated the effects of multiple freeze-thaw (F-T) cycles on water mobility, microstructure damage and protein structure changes in porcine longissimus muscle. The transverse relaxation time T2 increased significantly… Click to show full abstract
This study investigated the effects of multiple freeze-thaw (F-T) cycles on water mobility, microstructure damage and protein structure changes in porcine longissimus muscle. The transverse relaxation time T2 increased significantly when muscles were subjected to multiple F-T cycles (P<0.05), which means that immobile water shifted to free water and the free water mobility increased. Multiple F-T cycles caused sarcomere shortening, Z line fractures, and I band weakening and also led to microstructural destruction of muscle tissue. The decreased free amino group content and increased dityrosine in myofibrillar protein (MP) revealed that multiple F-T cycles caused protein cross-linking and oxidation. In addition, the results of size exclusion chromatography, circular dichroism spectra, UV absorption spectra, and intrinsic fluorescence spectroscopy indirectly proved that multiple F-T cycles could cause protein aggregation and degradation, α-helix structure disruption, hydrophobic domain exposure, and conformational changes of MP. Overall, repeated F-T cycles changed the protein structure and water distribution within meat.
               
Click one of the above tabs to view related content.