LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum.

Photo by abhishek008 from unsplash

The aim of this study was to calibrate chemometric models to predict beef M. longissimus thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) spectroscopy. Spectra were collected… Click to show full abstract

The aim of this study was to calibrate chemometric models to predict beef M. longissimus thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) spectroscopy. Spectra were collected on the cut surface of LTL steaks both on-line and off-line. Cooked LTL steaks were analysed by a trained beef sensory panel as well as undergoing WBSF analysis. The best coefficients of determination of cross validation (R2CV) in the current study were for textural traits (WBSF = 0.22; stringiness = 0.22; crumbly texture = 0.41: all 3 models calibrated using 48 h post-mortem spectra), and some sensory flavour traits (fatty mouthfeel = 0.23; fatty after-effect = 0.28: both calibrated using 49 h post-mortem spectra). The results of this experiment indicate that VISNIR spectroscopy has potential to predict a range of sensory traits (particularly textural traits) with an acceptable level of accuracy at specific post-mortem times.

Keywords: longissimus thoracis; visible near; near infrared; beef longissimus; spectroscopy; thoracis lumborum

Journal Title: Meat science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.