LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modular integrated longitudinal and lateral vehicle stability control for electric vehicles

Photo from wikipedia

Abstract In this paper, the problem of integrated longitudinal and lateral vehicle stability control is addressed using a modular optimal control structure. The optimization process of the high level model… Click to show full abstract

Abstract In this paper, the problem of integrated longitudinal and lateral vehicle stability control is addressed using a modular optimal control structure. The optimization process of the high level model predictive control (MPC) controller determines required longitudinal force and yaw moment adjustments to minimize the error between vehicle longitudinal and lateral vehicle stability dynamic states with respect to the target courses. The low level controller is designed to optimally regulate torque at each wheel based on the control inputs of the high level controller, and distribute required torque between the wheels via actuation system. The actuation system that is utilized to implement the proposed control structure functions based on all-wheel drive technology that can provide active control of both traction and yaw moment control with differential torque. The multi-layered structure of the control system allows modularity in design. The performance of the control structure is investigated by conducting experimental tests. The experimental tests have been performed on an electric Chevrolet Equinox vehicle equipped with four independent motors. The results show that the integration of the vehicle longitudinal and lateral dynamics preserves vehicle stability in a planar motion and improves the vehicle dynamic response, especially in challenging driving maneuvers.

Keywords: longitudinal lateral; control; vehicle; vehicle stability; lateral vehicle

Journal Title: Mechatronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.