LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Different Kinds of 3T2R Serial Kinematic Chains and Their Applications in Synthesis of Parallel Mechanisms

Photo from wikipedia

Abstract This paper proposes a new-kind three-translational and two-rotational (3T2R) motion with one fixed and one variable rotation directions. The serial kinematic chains (SKCs) that generate the proposed motions are… Click to show full abstract

Abstract This paper proposes a new-kind three-translational and two-rotational (3T2R) motion with one fixed and one variable rotation directions. The serial kinematic chains (SKCs) that generate the proposed motions are synthesized. They are quite different from the SKCs generating 3T2R motion with two fixed rotation directions. Firstly, according to the relationships between the two rotations in a motion, the classification of 3T2R motions is discussed. By using finite screw as mathematical tool, the expressions of the two different kinds of 3T2R motions are formulated as algebraic sets. Secondly, serial motion generators of the 3T2R motions are investigated. The SKCs that generate the first-kind 3T2R motion are briefly reviewed; the twenty-eight types of SKCs that generate the second-kind 3T2R motion are synthesized by analytical derivations. Finally, the SKCs with the second-kind 3T2R motion are used to synthesize new parallel mechanisms. Two five-degree-of-freedom (five-DoF) systematical parallel mechanisms are taken as examples to show the applications of these SKCs. This paper provides theoretical foundations for the research on motions generated by complex SKCs and on motion patterns with variable rotation directions and centers.

Keywords: different kinds; motion; serial kinematic; 3t2r motion; parallel mechanisms; kinematic chains

Journal Title: Mechanism and Machine Theory
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.