Abstract Flexible beams of variable effective length, serve both transmission and actuation functionalities in compliant mechanisms, have been employed in many devices, e.g., thermal actuators and continuum robots. This difunctional… Click to show full abstract
Abstract Flexible beams of variable effective length, serve both transmission and actuation functionalities in compliant mechanisms, have been employed in many devices, e.g., thermal actuators and continuum robots. This difunctional feature is favorable when utilized for operations in confined space. However, the length variation introduces modeling difficulties, which poses a new challenge to designers. To accurate model flexible beams of variable effective length and characterize the behaviors of associated compliant mechanisms form the primary objectives of this study. The chained beam constraint model is revisited and extended to model beams of variable effective length. Modeling of a chevron shape thermal in-plane microactuator and a continuum mechanism are provided to demonstrate the effectiveness of the proposed method. The predicted results have a high degree of accuracy as compared to experimental results and nonlinear finite element results.
               
Click one of the above tabs to view related content.