LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removing segmentation inconsistencies with semi-supervised non-adjacency constraint

Photo by marcinjozwiak from unsplash

The advent of deep learning has pushed medical image analysis to new levels, rapidly replacing more traditional machine learning and computer vision pipelines. However segmenting and labelling anatomical regions remains… Click to show full abstract

The advent of deep learning has pushed medical image analysis to new levels, rapidly replacing more traditional machine learning and computer vision pipelines. However segmenting and labelling anatomical regions remains challenging owing to appearance variations, imaging artifacts, the paucity and variability of annotated data, and the difficulty of fully exploiting domain constraints such as anatomical knowledge about inter-region relationships. We address the last point, improving the network's region-labeling consistency by introducing NonAdjLoss, an adjacency-graph based auxiliary training loss that penalizes outputs containing regions with anatomically-incorrect adjacency relationships. NonAdjLoss supports both fully-supervised training and a semi-supervised extension in which it is applied to unlabeled supplementary training data. The approach substantially reduces segmentation anomalies on the MICCAI-2012, IBSRv2 brain MRI datasets and the Anatomy3 whole body CT dataset, especially when semi-supervised training is included.

Keywords: adjacency; semi supervised; segmentation inconsistencies; training; removing segmentation

Journal Title: Medical image analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.