LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification

Photo by markusspiske from unsplash

Accurate and automated cardiac bi-ventricle quantification based on cardiac magnetic resonance (CMR) image is a very crucial procedure for clinical cardiac disease diagnosis. Two traditional and commensal tasks, i.e., bi-ventricle… Click to show full abstract

Accurate and automated cardiac bi-ventricle quantification based on cardiac magnetic resonance (CMR) image is a very crucial procedure for clinical cardiac disease diagnosis. Two traditional and commensal tasks, i.e., bi-ventricle segmentation and direct ventricle function index estimation, are always independently devoting to address ventricle quantification problem. However, because of inherent difficulties from the variable CMR imaging conditions, these two tasks are still open challenging. In this paper, we proposed a unified bi-ventricle quantification framework based on commensal correlation between the bi-ventricle segmentation and direct area estimation. Firstly, we proposed the area commensal correlation between the two traditional cardiac quantification tasks for the first time, and designed a novel deep commensal network (DCN) to join these two commensal tasks into a unified framework based on the proposed commensal correlation loss. Secondly, we proposed an differentiable area operator to model the proposed area commensal correlation and made the proposed model continuously differentiable. Thirdly, we proposed a high-efficiency and novel uncertainty estimation method through one-time inference based on cross-task output variability. And finally DCN achieved end-to-end optimization and fast convergence as well as uncertainty estimation with one-time inference. Experiments on the four open accessible short-axis CMR benchmark datasets (i.e., Sunnybrook, STACOM 2011, RVSC, and ACDC) showed that the proposed method achieves best bi-ventricle quantification accuracy and optimization performance. Hence, the proposed method has big potential to be extended to other medical image analysis tasks and has clinical application value.

Keywords: estimation; commensal correlation; ventricle quantification; ventricle; quantification

Journal Title: Medical image analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.