LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer's disease

Photo from wikipedia

Detection of early stages of Alzheimer's disease (AD) (i.e., mild cognitive impairment (MCI)) is important to maximize the chances to delay or prevent progression to AD. Brain connectivity networks inferred… Click to show full abstract

Detection of early stages of Alzheimer's disease (AD) (i.e., mild cognitive impairment (MCI)) is important to maximize the chances to delay or prevent progression to AD. Brain connectivity networks inferred from medical imaging data have been commonly used to distinguish MCI patients from normal controls (NC). However, existing methods still suffer from limited performance, and classification remains mainly based on single modality data. This paper proposes a new model to automatically diagnosing MCI (early MCI (EMCI) and late MCI (LMCI)) and its earlier stages (i.e., significant memory concern (SMC)) by combining low-rank self-calibrated functional brain networks and structural brain networks for joint multi-task learning. Specifically, we first develop a new functional brain network estimation method. We introduce data quality indicators for self-calibration, which can improve data quality while completing brain network estimation, and perform correlation analysis combined with low-rank structure. Second, functional and structural connected neuroimaging patterns are integrated into our multi-task learning model to select discriminative and informative features for fine MCI analysis. Different modalities are best suited to undertake distinct classification tasks, and similarities and differences among multiple tasks are best determined through joint learning to determine most discriminative features. The learning process is completed by non-convex regularizer, which effectively reduces the penalty bias of trace norm and approximates the original rank minimization problem. Finally, the most relevant disease features classified using a support vector machine (SVM) for MCI identification. Experimental results show that our method achieves promising performance with high classification accuracy and can effectively discriminate between different sub-stages of MCI.

Keywords: multi task; brain network; network estimation; task learning; disease; brain

Journal Title: Medical image analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.